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THE STRUCTURE OF MEMORY: FIXED OR FLEXIBLE?

ABSTRACT

Most current informatieu process,ng theories of cognition and memory

share one common feature: the structure (state-space) of memory is fixed

and retrieval from memory involves searching through that structure.

Learning, where it is treated at all, involves transforming one such struc-

ture into another. This form of representation is questioned and the struc-

tural learning theory is proposed to take its place. In comparison, the

latter theory has a flexible structure and is shown to have greater power

and parsimony, particularly regarding individual differences and learning.

Supporting data and relationships with research in artificial intelligence

and computer simulation cf problem solving are also discussed.



THE STRUCTURE OF MEMORY: FIXED OR FLEXIBLE?

Joseph M. Scandura

University of Pennsylvania

The view that memory is structured goes back to the old gestaltist

notion of grouping. It also finds realization in the notion of associative

network. In more recent times, memory theorists have borrowed freely from

computer science, particularly from the areas of computer simulation and to

a lesser extent from the more behaviorally neutral area of artificial intelli-

gence.

In spite of the great variety which exists among current information

processing theories, all such theories share one common feature: the struc-

ture of memory is fixed and retrieval from memory involves searching through

that structure. Learning, where it is treated at all, involves the transfor-

mation of an existing structure into a new one.

In the present article, this form of representation is questioned.

The first section introduces the notion of a state space (equivalently, problem

space, or relational net) and shows how a variety of prominent memory theories

are variants on the common theme. In section two, the structural learning

theory is reviewed, together with some closely related empirical research.

Finally, relationships between the structural learning theory and relational

net theories are discussed and an attempt is made to answer the question in the

title: is the structure of memory fixed of flexible?
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Relational Net Theories of Memory and Cognition

State Spaces

The notion of state space is very general and has been widely used

as a basis for representing a variety of theories involving boti:. computer and

human information processing. State spaces consist of two kinds of elements,

states and operators. In psychological terms, states refer to (encoded) en-

tities of various sorts (e.g., nonsense syllables, words, concepts, even rela-

tions). Operators refer to actions which map given states into other states.

State spaces may be represented as shown in Figure 1 by directed graphs

in which the nodes refer to states and the arrows to operators.

INSERT FIGURE 1 ABOUT HERE

Examples of state spaces range from associative networks among common nouns

(Bower, 1972) to directed graphs representing the possible stages through which

a prol,lem solver might go (Newell & Simon, 1972). The typical state space in

problem solving, for example, allows for available operators to act on nodes

in all possible ways; psychologically a state space may be thought of as the

totality of possible paths among the various states.

In particular applications one or more states must be singled out as

starting states, and a goal (G) is defined. Goals may be defined in terms of

specific states or in terms of properties which specify a class of states

(e.g., "is a check-mate position" in chess).

To achieve a given goal in this view, tha subject must find a solution

path from a starting state to a goal state. (To a,tually satisfy a goal, of

course, the operators in the path must be applied successively to some starting
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state(s).) One general approach to finding a solution path is to systematically

and exhaustively try out all possible routes, either beginning at a starting state

or at a goal state. In breadth first methods (for details, see Nilsson, 1971),

all operators emanating from a given node are tried first before the outputted

states are expanded. In depth first methods, states furthest removed from the

starting state are expanded (until some predetermined depth is reached) before

new states are expanded.

Heuristic search methods, on the other hand, attempt to expand promising

alternatives first and do not necessarily try out all possibilities. Consider,

for example, the crypto-arithmetic task

DONALD

+ GERALD

ROBERT

in which the task is to assign digits to the letters so that the two resulting

addends sum to the third numeral (see Bartlett, 1958 or. Newell & Simon, 1972).

INSERT FIGURE 2 ABOUT HERE

An exhaustive search of the space might move (in a depth first manner)

until each letter has been assigned a value. These assignments then would be

checked to see: (a) if the letters are paired with the digits in a one-two-one

manner, and (b) the assignments satisfy the indicated addition requirement.

A more heuristic method, suggestive of human behavior, would be to check the

one-to-one and addition requirements as each new digit value is assigned. For

example, once 4 and 5 are assigned to T and N, respectively, 4 and 5 are no

longer valid candidates for L.
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Many refinements of state space representations and search methods have

been proposed, of course, but the essentials remain as described: the possible

states and operators are represented in terms of a relational net (state-space)

and search methods are devised for finding paths between given states.

Learning (or storing information) in this view involves transforming

given state spaces into new ones. This may take the form of actually constructing

a new space or, as we shall see, tagging or in some other way distinguishing

certain states and operators in the given space.

Not surprisingly, a wide variety of current models of cognitive behavior,

most particularly in problem solving and memory, are increasingly recognized

as having a good deal in common (e.g. , Reitman, 1970).
1 The major difference

seems to be one of terminology. In problem solving, the starting states are

referred to as the "given" information and the goal specifies properties to be

satisfied by a solution (cf. Polya, 1962). In retrieval from memory, the start-

ing states correspond to (c-ternal) recall cues and information which happens

to be active in the processer (short-term memory). The goal refers to to-be-

recalled items.

Throughout our discussion, problem solving plays a distinctly secondary

role and is considered only where this serves to clarify our main argument.

Memory Theories

Because associative models of memory appear to be giving

way to the information processing view, it is perhaps surprising that both kinds

of models involve state space representations. These models range widely and

deal with the free recall of unorganized nouns (e.g., Bower, 1972) , the semantic

structure of memory (e.g., Rumelhart,. Lindsay, & Norman, 1972; Kintsch, 1972;

Quinlan, 1968; Collins & Quillian, 1972), the structure of paragraphs (e.g.,

Crothers, 1972), implication (e.g., Frederickson, 1972), and patterned sequences

of symbols (e.g., Simon, 1972; Restle, 1970; Glanzer & Clark, 1963; Vitz & Todd,

1969).
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Anderson's model FRAN (reported in Bower, 1972) provides perhaps the

most clearly defined associative model in this sense. This theory apparently

deals successfully with the free recall of unorganized (non-categorized) nouns.

In FRAN, the initial data base (state space) consists of 262 concepts

(nouns), each having between 3 and lq associative connections with the others

(determined from Webster's dictionary). The data base in this case may be

thought of as representing the associative connections that the population of

subjects might conceivably have learned. Particular (sub)lists of nouns are

learned in accord with associative principles. On each trial, an attempt is

made to tag (i.e., activate) the presented noun, and pathways emanating from

this noun are searched for other nouns in the list to be learned. Where such

pathways are found, they are marked with a LIST tag.
2

According to Bower, the

effect of such markings is to direct the executive (search method) during retrie-

val toward marked pathways leading from given nouns to ethers to be recalled.

In common with other associative theories, the marking of nodes and pathways

(i.e., learning them) is assumed to be a probabilistic process increasing linear-

ly with study time per item.

Anderson and Bower assume that between two and four items are held in

short-term memory (STM), together with newly presented nouns and/or retrieval

signals. In addition, three or fewer items are assumed to reside in a similar

store called ENTRY SET. ENTRY SET consists essentially of those nouns that are

connected to the largest number of associates. In effect, a total of about

seven items are assumed to be "active" at any one time, an assumption which has

become increasingly common in memory theories ever since Miller's (1956) classic

paper was written.

Among FRAN's more unique features as an associative model is that items

are not retrieved independently but depend on the items initially available and
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on successively retrieved items. During recall, the information processer is

assumed to respond immediately with the four or so nouns held in short-term

memory. The short-term memory nouns together with the three on ENTRY SET then

serve as starting nodes from which to commence a search through the associative

network. The executive (search) process examines the associative connections

emanating from these items in a depth first search until a noun is reached from

which no pathways emanate. The search continues only along learned pathways.

Nouns at t1.. ends of learned pathways are recalled.

Although they generally give greater attention to 'semantic and categori-

cal features, existing information processing models are also based on state

space methods. The model by Rumelhart, Lindsay, and Norman (1972) illustrates

this class as well as any. Here again, the data base is a state space (rela-

tional net) and retrieval is like running a maze from various starting points

to others.

In the Rumelhart et al. model, however, unlike the Anderson-Bower model,

no formal distinction is made between the data base and processes which operate

on that base. More immediately relevant here, the nodes in the state space

consist of concepts (e.g., bird) and actions (e.g., roll) connected by relations.

Although Rumelhart et al. are not explicit on the point, concepts may be viewed

as classes, or equivalently as properties of items which define classes. Such

properties are determined by encoding by insertion into classes (for details,

see Scandura, 1971). The processes (in the data base) may serve to retrieve

information in the data base or to modify the data base through learning. These

processes operate under the constraint of a fixed STM capacity.

The model also includes an executive interpretative process which encodes

information directly into the data base. The executive, together with certain

other unspecified primitive routines, are viewed as necessary features of a
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workable simulation system which are "defined outside of the memory structure

itself /Rumelhart et al., 1972, p. 2107."

Among the more significant fatures of the model are: (a) the possibility

of defining secondary 3
nodes (e.g., small bat) in terms of primary ones (i.e.,

small and bat), (b) a taxonomy of rules of formation for (new) relations,

concepts, propositions (i.e., concepts which express relationships among concepts),

and operators, (c) explicit processes for forming general concepts from a set of

examples and for subdividing concepts (e.g. , birds that do and do not fly).

Rumelhart, Lindsay, and Norman (1972) feel that three characteristics

most distinguish their model from others of the semantic processing variety.

First, rather than tagging new items as in the Anderson-Bower model, for example,

the interpreter constructs a list of properties (features) of the items. A

general feature of the interpreter is that when STM reaches capacity, an attempt

is made to reorganize its contents into higher level categories and thereby

reduce the memory load. Second, retrieval is viewed as reconstruction of items

from remembered characteristics in STM, rather than as searching for connections

between items. Although this distinction is important conceptually, it should

be emphasized that it is a direct implication of defining the nodes in the state

space in terms of properties (classes) . Locating to-be-recalled items still

involves searching through a state space. Failure to retrieve an item in the

Rumelhart et al. (1972) view, results when not enough characteristics of the item

have been stored. Third, retrieval is thought to be directed according to ex-

plicit heuristic criteria, rather than being relatively non-selective, as with

the undirected depth first search procedures used in FRAN, for example.

To summarize, a broad range of memory theories conceive of long term

memory (LTM) as represented by a state space. Storage, or learning, involves

either tagging items in a relational net, or constructing properties of items,
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which amounts formally to essentially the same thing since both involve trans-

forming one relational net into a new one. During retrieval in most such models,

search begins with the items or properties in STM. From there, a directed or

undirected search is initiated until the to-be-recalled item is found, or

failure results. At a formal level, most information processing accounts of

problem solving have the same general form. In this case, the goal is to find

a solution path from the given to a problem solution.

The psychological reality which state space theorists impute to their

constructs is well summarized by Newell and Simon (1972):

Human problem solving, we have argued, is to be understood by
describing the task environment in which it takes place; the space
the problem solver uses to represent the environment, the task,
and the knowledge about it that he gradually accumulates; and
the program the problem solver assembles for approaching the
task /pp. 867-868/.

Limitations

Unfortunately, state space formulations (including Newell & Simon's use

of production systems to represeni: search methods) have a number of important

and fundamental limitations. Perhaps the most basic are those pertaining to

individual differences in the formation of state spaces, and learning. Again

quoting Newell and Simon(1972):

Our emphasis has been on the problem solver's performance
program . . . We brought to bear what evidence we could on the
question of how the problem solver, in the face of a new task,
generates an appropriate problem space and program and on
the commonalities and differences among problem solvers.
Our answers to these questions were sketchy, for these areas un-
doubtedly represent the largest and most important terra incog-
nita on the map of the theory of human problem solving today
/pp. 867-868_/.

Although the importance of individual differences is well recognized,

existing state space theories have little more to say about them than the fact
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that state spaces and processes may vary over individuals.

In dealing with individual differences, the state space theorist is

posed with a dilemma, On the one hand, he may employ a separate state space

for each subject together with individual processes characteristic of that

subject. Such an approach, however, would be antithetical to science. Piaget,

for one, has recognized this problem and it is primarily for this reason (e.g.,

see Furth, 1969) that he chose to deal with the epistemic subject, rather than

the individual.

The alternative is to set up one state space to account for the behavior

of all subjects (or, at least, for a given class of subjects), together with

a fixed set of processes. In this case, however, the result will ne-.essarily

be a theory of averages. Such theories may provide convenient ways of explaining

and perhaps predicting average performance of groups of individuals,but they cannot

seriously be used to characterize individual processes (Scandura, 1971). Any

viable memory theory that purports to deal with individual differences must

distinguish between those characteristics which are common to all people and

those which make them unique.

Existing theories not only fail to deal with individual differences in

a substantive way but they tend to be geared to particular task environments.

The model described by Bower (1972) deals with the free recall, of unorganized

lists while that of Rumelhart et al. (1972) was explicitly designed to deal with

verbal organization. Both models probably reflect human memory of verbal material

to some degree since people can obviously deal with both kinds of situation.

Yet neither model by itself allows for this. In FRAN items are treated as wholes,

at the same level of abstraction. By stressing properties of items, Rumelhart

et al. get a somewhat more general state space but at the expense of more pro-__

cessing rationality (e.g., in forming general concepts) than is reasonable or

necessary in many situations.
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In state space formulations, it is also unclear what are the mechanisms

by which state spaces are constructed in the first place. The executive inter-

pretive system of Rumelhart et al. (1972) was designed for this purpose, but

if it is so important (as it is), why was it kept separate from the memory theory

itself? Equally important, the processes by which state spaces are modified

have an ad hoc character that are also treated independently. Clearly, there

are relationships between understanding, storing, learning, and searching for

information. Exactly, how are these processes related? What are the differences?

What do they have in common? With the exception of a fixed processing capacity

assumption, state space theories are strangely silent on these matters.

The Structural Learning Theory

Introduction: Competence and the Idealized Theory

With these questions in mind, let us briefly review the structural learn-

ing theory (Scandura, 1973) as it pertains to cognition generally, and memory

in particular.

The structural learning theory consists of three interrelated partial

theories, each of which must be tested empirically in a different way. First,

there is a theory of structured knowledge - or, more accurately as we shall see,

theories of structured competence. These theories deal with the problem of how

to characterize competence: the competence associated with particular behavior

constitutes a theory in its own right. The second partial theory brings the

behaving subject into the picture. It provides a basis (1) for determining the

knowledge had by particular subjects (relative to a given theory of competence)

and (2) for telling how that knowledge is selected for use and how new knowledge

is acquircl. This theory is an idealization in the sense that it applies only

where the subject is unencumbered by memory and his finite capacity for process-

ing information. The third theory is still more general, and tells what happens



when memory and information processing capacity are taken into account. These

three theories build upon one another in a natural way, although research on

any one can progress independently of the others.

The observer and the subject both play a fundamental role in the theory,

corresponding to the above distinction between competence and knowledge. Com-

petence involves rules introduced by an observer to account for behavior he is

interested in observing. This behavior, or more exactly, this class of poten-

tially observable input-output pairs, against which actual behavior is to be

judged, is predetermined. When the psychologist enters his laboratory, for

example, he has a pretty good idea ahead of time what stimuli and what responses

he is interested in. Whether or not the subject wiggles in his chair as he

elicits the response "MUR" may not only be unanticipated, but typically will

also be ignored. Similarly, in testing students to see whether they know the

subject matter, the professor can usually determine in advance what are the

stimuli and the corresponding acceptable responses.

More important, the rule sets introduced by the observer to represent

competence differ in an important way from standard competence theories in lin-

guistics (e.g., Chomsky & Miller, 1963), and indeed, from the formal mathematical

(production) systems (e.g., see Nelson, 1968) on which they are based.

A simple grammar, for example, consists of a finite set of rules, and is

said to account for an input-output pair if some sequence of rules in the rule

set can be found such that the successive application of these rules to the input

generates the output. This latter point is particularly important because it

is implicitly assumed that the rules must be combined in a very special way.

In the structural learning theory rules are allowed to interact in a more general

manner.
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To see the difference, suppose, for example, that the given class of

input-output pairs of interest consists of strings of the form xB By where

x is string of a's and y is the binary numeral representing the number of a's

(e.g., aaaaaB B101, aaB B10) . A simple grammar which accounts for this

class, includes the rules r1 = xxBy xBOy and r2 = xxaBy xBly. To account

for the pair aaaaaB B101, then, we see that

r
2

r
2

aaaaaB aaBl aB01 B101.

Notice that neither of the given rules is sufficient in itself to account for

the given pair. It is necessary to assume that the rules may be applied suc-

cessively as many times as desired.

An equivalent way of accounting for this class is to explicitly include

a generalized composition rule * in the characterizing rule set, call it

A = rl, r2, * }. Accounting for a given input-output pair, in this case, means

either that there is a rule in A which generates the output on application to

the input or that such a rule may be derived by application of rules in A to

other rules in A. More precisely, we say that A accounts for an input-output

pair if there is a finite number n such that there is a rule in one of the follow-

ing sets which generates the output from the input.

A = r,

A2= A U t r *r , r *r , r *r , r *r,
1 1 1 2 2 1 2 2

A3= A2 U rl *r
1
r

'

*r2 *r1, r
1
*rlicr,), .

With respect to the above instance aaaaaB -* 8101, for example, the rule r
2
*r

1
*r

2

in A
3
serves this purpose.
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It is important to emphasize that these two formulations are mathemati-

cally equivalent insofar as computing power is concerned, so in one sense we

have nothing new. Mathematical equivalence, however, does not necessarily imply

behavioral equivalence, or even as I would propose in this case, behavioral

viability. One way to see this is to observe that the composition rule * is

just one of any number of different higher order rules that might be included

in a rule set. Such rules can greatly increase the power of a rule set. For

example, the higher order rule

r
a

rb

operates on rules involving a's and converts them into corresponding rules in-

volving b's. Just this one rule doubles the power of the given rule set to

include an equivalent set of input-output pairs where the inputs involve b's

instead of a's. More important, every time a new rule involving a's is added

to the rule set, we automatically get "free," because of this higher order rule,

a corresponding rule involving b's.

In contrast with competence, the term "knowledge" refers to a potential

for behavior. Knowledge also consists of rules, but these rules are attributed

to a behaving subject and are thought of as generating behavior. Previous theories

(e.g., see Piaget in Furth, 1969; Newell & Simon, 1972), in which rule like con-

structs are attributed directly to behaving subjects, have been essentially non-

operational. The underlying mechanisms have been difficult if not impossible

to test empirically. The Piagetian mechanisms of accomodation and assimilation,

for example, are immune in an important sense to behavioral test because the

effects of these mechanisms on behavior depend on the knowledge individual sub-

jects have when they enter the learning or testing situation. But, Piagetian

theory itself provides no way of finding out what this (individual) knowledge is.
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The structural learning theory provides an explicit way of handling

this problem. The rules introduced by an observer to account for the behavior

of interest are used as an instrument of sorts with which to measure

human knowledge. More specifically, the theory tells how, through a finite

testing procedure, one can identify which parts of given rules in a competence

theory individual subjects know - that is, which rules the subjects can perform

in accordance with. The rules in a competence theory in a very real sense serve

as rulers of measurement, and provide a basis for the operational definition of

human knowledge. It should be noted in this regard that to have behavioral re-

le.ance, a rule set must reflect the common culture shared by the population in

question.

To briefly review how this is accomplied (for details, see Scandura, 1973),

we first note the basic assumption on which the theory rests is that people are

goal directed information processers. Further, rules may be viewed as procedures

in the sense of computer programs and may be characterized, for example, as flow

diagrams or labeled directed graphs (see Scandura, 1973).

INSERT FIGURE 3 ABOUT HERE

Procedures can always be broken down into simple enough steps so that

each subject in a given population is able to perform each step perfectly or

not at all (cf. Suppes, 1969; Scandura, 1973). In short, each component step

of a procedure may be assumed to act in atomic fashion. The behavioral reality

of atomic rules has been established, in my opinion, beyond any reasonable

doubt (e.g., see Scandura, 1969).

Since each component acts in atomic fashion, each path through a proce-

dure also acts in atomic fashion. That is, each path through a procedure makes
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it possible to generate responses to a uniquely specified equivalence class of

stimulus items, and to no others. Furthermore, there are only a finite number

of such paths, since we do not distinguish paths according to the number of

repetitions of loops. Collectively, these paths impose a partition on the

domain of stimuli to which a procedure applies. This makes it possible to pin-

point through a finite testing procedure exactly what it is that each subject

knows relative to the initial procedure introduced by the observer. It is suf-

ficient to test the subject on one item selected randomly from each equivalence

class. Success on any one item, according to our assumptions, implies success

on any other item drawn from the same equivalence class, and similarly for failure.

Knowledge (behavior potential), then, is also represented in terms of

rules (procedures), specifically in terms of sub-portions of initial, corres-

ponding competence procedures. It should be emphasized in this regard that the

knowledge attributed to different individuals may vary even though only one rule

of competence may be involved. The idea is directly comparable to measuring

different distances with the same ruler.
4

None of this is idle speculation. Scandura & Durnin (1973) and Durnin

& Scandura (1973) have collected data involving a large number of different

tasks, with subjects ranging from pre-school children to Ph.D. candidates.

When run under carefully prescribed laboratory conditions, it was possible to

predict performance on new items, given performance on initially selected items,

with over 96% accuracy. When the testing took place under ordinary classroom

conditions, where the subjects were run as a group, the predictions were accurate

in about 84% of the cases.

The structural learning theory also provides a precise set of mechanisms

by which the rules available to a subject are put to use, and by which new rules

are acquired. The basic Idea rests on the assumption that human beings are goal
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directed information processers, and that control shifts among various higher

and lower level goals automatically in a predetermined manner, according to the

requirements of the situation.

For present purposes, we may think of the mechanism informally, operating

as follows: given a task (stimulus and goal) for which the subject does not

have a solution rule immediately available, control is assumed to automatically

switch to the higher level goal satisfied by rules which do apply. With the

higher level gnal in force, the subject assumably selects from among available

and relevant higher order rules in the same way as he would with any other goal.

In effect, if the subject has an applicable rule available, then he will t' ;e it.

Where no such higher rules are available, the theory assumes that control moves

to still higher level goals. Conversely, once a higher level goal has been

satisfied, control is assumed to revert to the next lower level,

Assume, for example, that a subject is asked to convert 5 yards into inches,

but that he does not know explicitly a rule for accomplishing this (e.g., he

does not know that there are 36 inches in a yard). Let us assume, however, that

he does know rules for converting yards into feet and feet into inches, together

with a higher order rule which operates on pairs of rules such that the output

of one serves as the input of the other and generates composite rules.

In this case, control would be assumed to shift to the higher level goal

of finding a solution rule. According to the simple performance hypothesis,

then, the higher order rule is applied to the yards to feet and feet to inches

rules, generating a composite rule from yards to inches. This composite rule

satisfies the higher level goal so control reverts to the original goal. Here

the simple performance hypothesis is used once again and the composite rule is

applied to solve the problem.
5
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Again, none of this is idle speculation. Several experiments (Scandura,

1971, 1973) rather conclusively demonstrate the viability of the analysis, at

least under the limited conditions tested. One experiment (Scandura, 1973),

for example, involved the composition higher order rule and simple rules for

trading objects such as toothpicks for erasers. Atter training on the requisite

simple rules, naive subjects were either trained or not on the higher order rule.

Then, they were presented with new pairs of simple rules and tested on problems

that required corresponding composite rules for their solution. Correct predic-

tions in this experiment were made in 29 out of 30 individual cases.
6

In a

somewhat more complex and demanding experiment (Scandura, 1973), each subject

was required to generalize from a specific rule. Correct predictions were made

in 50 of 50 cases.

Extension to Memory

In the idealized theory it is assumed essentially that the subject has

a single active memory A, consisting of elements (degenerate rules), simple

rules, and rules which operate on rules. The contents of this memory, including

new elements which may be generated in the course of a computation, are assumed

to be readily and uniformly available to the subject. The absence of a priori

relations among the rules can be represented as in Figure 4A.

INSERT FIGURES 4A & 4B ABOUT HERE

Experiments have shown that this idealization can be approached in practice(e.g.,

Levine, 1966; Scandura, 1973) but, of course, this will not be the case in all

empirical situations. Even familiar information is not always equally easy to

recall; witness the "tip of the tongue" phenomenon. In general, at any given
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point in time some knowledge (rules) will be available (aroused) but other

knowledge will not.

With this in mind, Scandura (1973) extended the idealized theory by

distinguishing between a long term memory (M), consisting of a cumulative

record of all active elements, and that small part of it (A) which is active

at any one time (see Fig. 4B). M is a finite set of rules as before; but only

rules and (encoded) stimuli in A can generate responses or produce new know-

ledge. All processing goes on in A.

In developing the theory, Scandura (1973) found it convenient to distin-

guish between memory theory where the capacity of A is finite but unbounded

and where the capacity of A is fixed. Clearly, the memory theory with unlimited

processing capacity is more broadly applicable than the idealized (memory free)

theory. In particular , the theory applies in situations where certain rules

are not immediately available in A, even though the subjects may have previously

learned and stored them (in M). In testing the theory, the only essential con-

dition is that the subject not be hampered by his limited capacity for process-

ing information. This can be accomplished, for example, by providing the

subject with a pencil and paper, and all the time he needs.

In the theory, stimulation from the environment that enters A automatically

becomes part of M. This information remains immediately available to the sub-

ject, however, only as long as it remains in A. It can be retrieved at a later

time only if it has been stored (via rules) in relation to other information

which can serve to cue it. Specifically, storing information involves construct-

ing rules by which to-be-remembered elements can be generated from other elements

(that are either given as cues or in A). Retrieving information involves using

active rules to generate observables frcm given cues and elements in A (or in

the environment).
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The basic mechanisms of the memory theory with unlimited processing

capacity are a direct extension of those for the idealized theory. In retrieval,

for example, control may shift among goal levels as before. The relatively small

number of rules in A, however, serves to keep within strict bounds the number

of rules that must be tested at each stage. Where desired rules cannot be de-

rived or retrieved solely from rules in A, or in the environment, control shifts

so as to activate (i.e., derive or retrieve) rules which do make this possible.

For example, it is reasonable to assume that some of the rules needed in a deri-

vation, particularly those on which a given rule might operate, may not be active

(in A). In this case, the mechanism allows control to shift automatically to

what are called domain goals. Domain goals are satisfied by rules in the domains

of corresponding available (higher order) rules. Once needed domain information

is activated, through derivation or retrieval, control returns to the goal from

which the secondary domain mechanism was initiated, and the process continues.

To date, only one series of experiments has been run to test the memory

theory with unlimited capacity. This research w.ls concerned with the behavior

of individual subjects in particular situations, and involved a demanding new

paradigm in which a major task was to insure that the experimental conditions

accurately and completely reflected the proposed theoretical requirements. In

each experiment the overall results strongly supported the theoretical mechanism

under study. There were some minor perturbations in the data of a few indivi-

duals in the earlier experiments, however, which led to methodological refine-

ments that were required by the theory but had originally been overlooked.

In Experiment I, the author's assistant made certain modifications in the

procedure that were not caught until after 32 subjects had been run. Since they

appeared to be minor and could very easily be made by anyone running such an
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experiment for the first time, it is instructive to consider this experiment

in detail.
7

Experiment I

Method

Materials. The experimental material was similar to that used in an

experiment by Scandura and Ackler (reported in Scandura, 1973). These materials

consisted of sets of small items such as paper clips and rubber bands which were

used in making trades with the experimenter. In addition, there were cards

each of which described a rule for trading n stimulus objects for n + m or

n - m response objects. On the back of each card was a symbol designated as

the "name" of the card. There was also a chart which could be used for locating

rule cards by name for making specific trades.

The cards were used to designate two kinds of rules, simple and composite.

Simple rules affected trades directly and were represented on 5 x 8 inch cards.

The card at the top of Figure 5 designates a simple rule which maps n paper

clips into n + 1 blue chips.

INSERT FIGURE 5 HERE

The card at the bottom of Figure 5 designates a composite rule for changing

pencils into paper clips, and then paper clips into white chips.

A pair of simple rules is said to be compatible if the output of one matches

the input of the other. Compatible rules can be combined to form composite rules.

For example, the rules n pencils n + 2 paper clips (A7.13) and n paper clips-

n + 1 white chips (13 --C) can be combined to form a composite rule (A-4SC) which

Traps n pencils into n + 3 white chips. The set of compatible simple rules com-

prises the domain of a higher order composition rule which maps such pairs into

corresponding composite rules.
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The chart was a 9 x 9 table in which the entries were names of rules

for converting row elements (e.g., pencils) into column elements (e.g., paper

clips). The main diagonal and all entries below and to the left of it were

blank. Thus, no element could be traded for itself, and no rule had an inverse.

For example, there was a rule for trading pencils for paper clips but none for

trading paper clips for pencils. The chart could be used to identify rules

not immediately available. (This corresponded to retrieval).

Tasks. There were four different kinds of tasks. The first were direct

trading tasks in which the subject was given a simple or composite rule card and a

set of stimulus objects. He was asked to make the trade indicated on the card.

The higher order rule was used to define a second higher order (H) task

in which the subject was presented with a compatible pair of simple and

B-C rules and a set of stimulus objects A. The goal was to trade the given

A objects for the output (C) of the simple B-.0 rule (that did not involve the

A objects). This could be accomplished by first deriving the necessary composite

rule and then applying it. The composite rules (cards) could be derived by

rearranging the given pairs of compatible simple rule cards to form composite ones.

In the third, domain (D), task the subject was given a simple B-.0 rule (e.g.,

n paper clips n + 1 white chips) and a set of A items not represented on the card

(e.g., pencils). Furthermore, the column on the chart which corresponded to the

rule output C (e.g., white chips) was covered so that it was not possible to name

the rule which converted pencils directly into white chips. The goal was to

find a pair of compatible rules (including the given rule) in the domain of the

higher order composition rule. The inputs of the derived simple rule had to

match the given A objects (e.g.; pencils), and the outputs had to match the inputs (B)

of the given card (e.g., paper clips). For example, given pencils and the rule
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n paper clips - n + 1 white chips, the subject had to use the chart to find the

rule which traded pencils for paper clips. The (domain) rule for accomplishing

this involved locating the row and column of the table corresponding respectively

to the domain and range of the desired rule. The entry in each row and column

was the name of the indicated rule.

The fourth task was a composite HD task. The stimulus situation was

identical to that in the domain task, but the goal, for example, was to trade

pencils (A) for white chips (C). This task could be solved by identifying the

composition higher order rule as adequate, retrieving the needed A-'B domain rule

from the table, applying the higher order rule to the A-'B and B.4C rules to form

the needed composite rule, and finally applying the composite rule to solve the

problem.

Subjects, design, and procedures. The subjects were 32 elementary

school children in second through sixth grades at the Belmont Hills and Lea

Elementary Schools in Lower Merion, Pa. and West Philadelphia, respectively.

The experiment was conducted with individual subjects in two separate sessions,

usually a day apart. At the end of each session the children were offered a

balloon.

The first session consisted of pretraining and a Transfer Pretest. The

subject was told he was going to play a trading game with the experimenter. He

was then taught how to interpret the rule cards and to make trades using the

rules represented by these cards. The experimenter pointed out that each rule

card had a name printed on the back and that the names of all of the rules were

on the chart, but he did not indicate how the chart was used. The subject was

shown a rule and told, for example, "This is rule M; it is on our chart. Rule

M tells us, no matter how many paper clips I give you, you must give me the

same number of blue chips plus one."
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The experimenter initiated a number of trades requiring use of the

simple rule, providing assistance where necessary until the subject reached

a criterion of three consecutive successful trades. The experimenter then gave

the subject a set of objects not in the domain of the rule and asked the subject,

"Can you use this rule to trade these pipe cleaners Tor example7 for blue chips?"

Regardless of the subject's response, the experimenter emphasized that the rule

could be used only to trade paper clips for blue chips.

The experimenter then showed the subject a different rule card and

asked him to interpret the rule providing assistance if necessary. Before

moving to the next card, the subject was required to use the rule to make three

successful trades. This process continued until the subject reached a criterion

of three successful trades without assistance, using three different, consecu-

tive rule cards. At this point, it was assumed that when presented with a simple

rule card, the subject could apply the corresponding rule.

Next the subject was taught in a similar manner how to interpret and

use the composite rules. In the case of the composite rule shown in Figure 5,

the subject was told, "Here is a rule for trading pencils for white chips. This

rule says that no matter how many pencils I give you, you must give me the same

number of paper clips plus two. Then no matter how many paper clips you have,

you give me the same number of white chips plus one." As before, the subject

was required to perform three consecutive correct trades with each composite

rule. Training continued until the subject correctly interpreted three different

consecutive composite rule cards. Then counter-examples were given. The sub-

ject was shown a composite rule and given a set of stimulus objects not in the

domain or was given appropriate stimulus objects and asked to trade for objects

not in the range. Throughout the pretraining, the subjects were always told

when they were right.
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The subject was then given a Transfer Pretest consisting of three tasks:

a higher order (11) task, a domain (D) task, and a composite (HD) task. The order

of testing was H, D, HD.

On the H task, the subject first was presented with cards representing

a pair of compatible rules. The subject had not seen either rule before, but it

was assumed, by virtue of his earlier training, that he knew what the cards meant.

The subject was told that he could use the simple rule cards and that he might

"move" them but he was not shwn how to do so. Then the subject was asked to make

three trades requiring the use of the corresponding composite rule. (He was never

shown this rule directly either before or after testing.) For example, a subject

who was presented with the (A-4B B-.C) rules "n loose leaf reinforcers n + 3

paper clips," and "n paper clips -4 n + 1 gummed labels" would be presented in

turn with various numbers of reinforcers (e.g., A = 6, 8, and 5) and asked for

the appropriate numbers of labels (C). If he made three successful consecutive

trades he was rated competent. If he failed on any one presentation he was rated

incompetent and the task was not repeated. However, if the subject clearly applied

the higher order rule but made an error in counting, the experimenter warned the

subject to be very careful, and presented the task again.

On the D task, the subject was presented with a card representing a simple

B-.0 rule (e.g., "n paper fasteners -4 n + 4 rubber bands") and a set of stimulus

A objects not in its domain (e.g., pipe cleaners). The C (i.e., rubber bands)

column of the table was covered so it was not possible to find the rule converting

A objects to C objects (i.e., pipe cleaners to rubber bands) directly. The subject

was told, "I want to trade pipe cleaners for rubber bands. We need a pair of

rules to let us do that. One of them is going to be this rule. Can you tell me

what other rule I need so I can trade the pipe cleaners for the rubber bands?"

The experimenter also emphasized that the subject could use the chart (but no

training was given on it). If the subject responded correctly, the stimulus ob-

ject was changed, the rule remained the same, and the task was repeated. If
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the subject responded correctly three times in a row he was rated competent.

Otherwise he was rated incompetent on the D task.

Finally, the subject was tested on the HD task. He was reminded first of

what rules he knew or had learned up to that point. For example, if the subject

had learned the H and D rules, the experimenter might say, "In this problem you

may use all the rules you have learned. You have learned to make trades. You

have learned how to rearrange the cards to make a rule. You have learned how to

use the chart to find a rule you need. If you need a rule you don't have, you can

ask me for it and I will give it to you." These reminders were repeated during

the testing if necessary.

Then the subject was given a simple rule and a set of stimulus objects not

in its domain, and asked to trade the stimulus objects for the output of the given

rule. In order to succeed, the subject had to ask for the necessary card, combine

it (perhaps mentally) with the given one, and make the trade. (During testing

some subjects misdefined the problem and tried to trade the stimulus A objects

for the C output of the given rule by using the given a-c card. When this hap-

pened, the experimenter drew the subject's attention to the fact that the stimulus

objects were not in the domain of the given rule. If the subject asked the experi-

menter for the wrong rule, he was allowed to choose again, if he wished.) The

criterion for competence on the HD task was three correct trades. No reinforce-

ment was given during the Pretest or the Posttests.

The 24 subjects who had failed any of the Pretest tasks, participated in

the second session during which training was given on the higher order composition

H task and the domain D task. Twenty-two of the subjects(H-D group) were trained

first on the H task and then given Transfer Posttest I which was identical to the

Pretest. Next, they were trained on the domain task (i.e., on how to use the

chart) and given Transfer Posttest II. Later two subjects(D-H group) were trained

first on the domain rule. On the Posttests, only the simple rules and stimulus

items were changed. All subjects were given both H and D training, even if they
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were already competent on a corresponding H or D task. No subject was trained on

the HD task.

In training on the higher order (H) task, the subject was shown a pair of

compatible (A 'B, ac) rules and a set of stimulus A objects. The experimenter

demonstrated how the rules could be combined by sliding the simple rules together

in the appropriate manner. The subject was then asked to interpret the newly formed

A.B. rule. The A-B and Et-C rules were separated again and the subject was given

a new set of stimulus A objects and asked to actually trade for C objects. This

was repeated until the subject had successfully performed three consecutive trades

with the given rule pair. Then new pairs of rules were introduced until the sub-

ject made three successful trades with three consecutive, different pairs in a row.

Counter examples were then given. Sometimes the subject was given a compatible

pair of rules and asked to trade an element not in either domain, or to produce an

element not in the range of a rule. Or, the pair presented was not compatible and

the subject had to indicate that two rules could only be combined if the output of

one matched the input of the other. In this case, the experimenter emphasized

that the higher order rule only applied to pairs of rules. In actually solving

the problems the subjects were not forced to slide the simple rule cards together

if they preferred not to.

In the domain training, the subject was given a simple B-C rule, for example,

"n paper clips - n 2 white chips" and a set of stimulus A objects not in its do-

main (e.g., pencils). The C (i.e., white chips) column in the table was covered.

The subject was told, "I want to trade pencils (A) for white chips (C). We can't

do it just with this card so we need a pair of cards. One of them will be the

(a-c) card we have here /pointing/. Now we're going to see how we can use the

chart to find the other (A-13) card." The subject was then taught how to find the

(A-4B) rule for trading pencils for paper clips. After a subject retrieved an A-13

rule by using the chart, the experimenter held the rule against the given rule

so that the subject could see that the output of the former matched the input of
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the latter. Similar tasks involving different simple rules and stimulus objects

were presented until the subject was successful at finding the missing rule on

three consecutive tasks. The experimenter always emphasized that a pair of rules

was necessary to solve the problem, even though one of the rules was given. The

question was always phrased, "What pair of rules do I need . . ."

Results and Discussion

Of the 32 subjects given the transfer pretest, eight were successful

on the H, D, and HDtasks. Ten of the remaining 24 failed on all three Transfer

Pretests; the other 14 succeeded only on the H Pretest.

After training on the H task, all of the first 22 (of the 24) subjects

succeeded on the H task on Transfer Posttest I. Except for one of the 22 sub-

jects who also succeeded on both the D and HD tasks, they all failed on the D

and HDtasks. After subsequent training on the D task, all 22 subjects not only

succeeded on the II and D tasks on Transfer Posttest II but they also succeeded

on task HDon Transfer Posttest II.

Of the two remaining subjects (in the D-H training group), one failed

on all three Transfer Pretests and the other succeeded only on the H pretest:.

Both subjects succeeded on all three tasks on Transfer Posttest I, after D train-

ing, and did so again after the subsequent H training. These results are sum-

marized in Table 1. In the table, "+" indicates that the subject reached cri-

terion and "-" that he did not. Subjects are identified according to age (8, 9,

10, 11, 12) and sex (B, (3).

INSERT TABLE 1 ABOUT HERE

With the exception of two of 48 posttests, all of these results are

consistent with the theory. Before H and D training, there was no basis for
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predicting performance on the H and D tasks because there was no way of knowing

whether or not the subject had already mastered the requisite rules. The only

restriction on the Pretest is that a subject who knows both of the higher

order H and D rules should, according to the theory, not only be successful cn

the H and D tasks, but also on the HD task. The data support this prediction

in eight of eight cases.

The same pattern was obtained after the H and u training. In only one of

22 cases did H training lead to success on D Posttest I, and here the subject

was also successful on the HD task as would be expected. Although only two

subjects were given the I) training first, the data suggest an overlap bfstween

training and performance on the H task (as well as on the D task). As before,

as well as throughout Transfer Posttest II, success on the H and D tasks was

followed by success ea the HD task.

All in all, one might be tempted to report strong support for the proposed

mechanism. This would be inappropriate, however, because the H training

inadvertently was not restricted to the higher order composition rule. The

subjects were not only taught how to generate composite rules from pairs of

compatible simple rules, but also to use the derived composite rules Lo soave

r! tasks. In effect. they -vere taught both the II rule and the (ideal ized)

mechanism itself, thereby leaving unanswered the question of whether the

mechanism itself is innate. This in itself, however, was not a serious problem

since the innateness of the idealized mechanism had been tested previously

(bcandura, 1973).

The problem came in interpreting performance on the HD task. our original

intent was to determine whether training on a /3.t, rule, the H rule, and the 0

rule was sufficient for solving an A-.0 problem. Assuming that the subject is

capable of evaluating the lower and 'higher level goals involved (See Scandura,
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1973, Ch. 9 - especially pp. 287 & 294), the postulated (enriched) mechanism

is sufficient for this purpose. Given a set of A objects and the goal of finding

the appropriate number of C objects to trade, control would be assumed to go to

the higher level goal consisting of rules which apply to A objects and generate

C objects. The only available rule for accomplishing this is the higher order H

rule. But, the II rule only operates on pairs of compatible simple rules. Hence,

control is assumed to go to the domain goal consisting of such pairs. In this

case, the only adequate and available rule is the higher order D rule (which applies

in situations where a a-c rule and A objects are available). Since the necessary

domain elements are available, the rule is applied and a compatible pair of A7-$B,

B-4C rules is generated. This pair satisfies the domain goal so control goes to the

original higher level goal. This time the H rule is applied and a composite A-08-.0

is generated. Since the higher level goal is satisfied control goes to the original

goal, the composite A-08-.0 rule is applied and the problem is solved.

Unfortunately, this is not the only reasonable way to account for the HD task

results. Because of the nature of the Ii training, it is just as reasonable, per-

haps more so, to assume that the HD task was solved by composing the rules actually

taught during the D and H training. To see this, notice that application of the

D-rule taught during D training generates the needed A-011, B-+C pair. Subsequent

application of the combined H-rule and "mechanism" taught during H training, then,

not only generates the composite A-.&-.0 rule but also applies it to solve the prob-

lem. (It is important to recognize in this regard that generating an A-.B-4C rule

followed by its use is not equivalent to a composition of rules.) Thus, assuming

that a subject who has been given the H training also knows the composition H-rule

(separate from the mechanism), which seems reasonable with the subjects used,

success on the HD task can be explained as follows: After control goes to the

higher level goal, the composition H rule is applied to the D rule and the combined

H rule and mechanism forming their composition. (Notice that the two rules are

compatible since the output of the former serves as input for the latter.) The
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resulting composite rule satisfies the higher level goal so control reverts to the

original goal, the resulting composite rule is applied, and the task solved.

Experiment II

Experiment II was designed to eliminate the second interpretation as a viable

alternative.

Method

The materials, tasks, and procedures in Experiment II were identical to those

of Experiment I except in training on the higher order rule and in stating the

subject's goal in the domain rule training.

Instead of training on the higher order transfer task itself (i.e., training

on a rule for solving such tasks), higher order rule training in Experiment II was

limited to the higher order H rule for forming composite rules from compatible

pairs of simple rules. During training, the subject was first shown two compatible

simple A-413, B-.0 rules and a set of stimulus A objects, corresponding to the inputs

of the k*B rule. His goal was to find an A-.B.-#C rule for trading the given A objects

for C objects. The experimenter demonstrated how the simple rules could be com-

bined by sliding them together in the appropriate manner. Then, the rules were

separated and the subject was given a new set of stimulus A objects and asked to

construct a composite rule. The subject did not perform any trades with the rule,

as in Experiment I. This was repeated with other pairs of simple rules until the

subject was able to form appropriate composite rules when this was possible, or to

identify the simple rules as incompatible. In addition, the subject was sometimes

given a pair of compatible A'-43', B'.-C' rules where A'# A and C'# C, and, if neces-

sary, instructed why the corresponding rule could not be used to trade A

objects for C objects.

On the domain task and training, the subject was given a simple a-c rule (e.g.,

n gummed labels n-2 rubber bands), and a set of A items (e.g., toothpicks) as

before. Also, the C column on the chart which corresponded to the rule output (i.e.,
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rubber bands) was covered so that it was not possible to name the rule which con-

verted A objects directly into C objects.

The way in which the goal was stated, however, was changed. No reference was

made to finding a pair of compatible rules for making trades. Rather, the subject's

stated task was to find a pair of rules in which the outputs (B) of one (A-.B) were

the same as the inputs (B) of the other (B-.C) and the inputs (A) of the first were

identical to the given A objects and the outputs (C) of the second were identical

to the outputs of the given B-.0 rule. One of the two rules, of course, was always

the given rule. (To help insure that the task was understood, this was explicitly

stated only on the Pretests.) For example, given toothpicks and the rule, n gummed

labels - n-2 rubber bands, the subject had to find the A-'B rule which converted

toothpicks into gummed labels, and indicate that the given rule (n gummed labels -0

n-2 rubber bands) was the other rule.

During D training, the subject was shown how to locate needed rules by name

in the row and column of the table corresponding, respectively, "to the inputs and

outputs of the desired rule. ". (The words "input" and "output" were explained to

the subject during the pretraining, and the subjects were taught to identify them

on the cards.) Subjects were taught to identify the given rule as one member of

the needed pair by giving the name on the back of the rule card. In short, the

domain instruction involved using the chart to find compatible pairs of rules but

references to the possible use of the rules in making trades were eliminated.

Since the results of Experiment I suggested that D rule training may influence

H test performance, second grade subjects (aged 7-8) were used in the D-H group

because they would presumably be more sensitive to inadequacies in wording and

treatments. The first four D-H subjects were trained on the D task as in Experi-

ment I. The seven other D-H subjects were trained on this task as described above.

In addition, there was an H-D group consisting.of 10 fourth graders (aged 8-10). These

subjects all received the modified H and D training described above.
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One of the second graders, a 7 year old boy, was unable to complete the pre-

training successfully, and was not included in the experimental comparison. Five

of the younger subjects (aged 7 or 8) were unable to complete the experiment in

two sessions. In these cases the experiment was spread out over three or more

sessions. The length and content of the sessions varied with each subject's

attention span and rate of progress. A typical subject might participate in four

one-hour sessions with the first consisting of pretraining, the second of further

pretraining and the Pretest, the third a review, domain training and Posttest I,

and the fourth another review, higher order composition training and Posttest II.

The mean time spent on subjects in the training group was two hours

and thirty-five minutes. The shortest time was one hour and fifty-five minutes.

The longest, four hours and forty minutes. For the somewhat younger D-H group,

the mean time per subject was three hours and forty-five minutes. The shortest

time was two hours and twenty-five minutes; the longest, seven hours and fifty-

five minutes.

Results and Discussion

The results of the H-D subjects closely paralleled those of Experiment I.

After training on the H and D tasks, all 10 subjects on Posttest II not only

succeeded on the H and D tasks, but on the HD task as well. Also as expected,

H training improved performance only with those 2 subjects who failed on the 11

Pretest. In no case did H training transfer to success on the D task.

In effect, these results clearly tend to discount the alternative explanation

of the Experiment I data lending further support for the proposed (enriched)

theoretical mechanism.

The results of the younger D-H subjects, however, were less clear. In 2 or

3 cases (one was a second administration of the experiment to or subject), D

training led not only to success on the D task, but also on the H task. Closer

scrutiny of our experimental method during D training and testing indicated one
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possible source of difficulty. In many cases, the experimenter inadvertently

showed the subjects how the A-B rules, once retrieved, matched the B-C rules. The

very process of showing how the rules matched effectively amounted to instruction

on how to form composite rules. It is not therefore surprising that some of the

subjects were able to solve the H transfer tasks after D training but not before.

It should be noted that this activity by the exp!rimenter was not prescribed by

the instructions provided but evolved naturally in the course of attempting to

explain rather complex ideas to young and generally untalented children. The fact

that this took place was determined by the analysis of the tapes of the experimental

sessions by the author and the experimental assistant.

There were also some additional anomalies with these young subjects that were

observed for the first time. On four occasions (one subject twice), subjects suc-

ceeded on the first H task on the Pretest or Posttest but failed when the number

of stimulus inputs to be traded was changed (indicated +?). Why this was so is

not clear but it appeared likely that it was due to idiosyncratic features of the

particular rules used and/or the subjects themselves. For example, one seven year

old boy traded correctly on the first H presentation, but did so without moving

the given A.-13 and PriC cards together. On the second presentation the subject ap-

peared confused, as if he interpreted the repetition of the problem as an indica-

tion that he had traded incorrectly on the first presentation. On the second pre-

sentation he traded the given A objects for C objects using the ac card, then

traded the C objects for B objects using the A-B card, The stimulus objects were

changed several times and on each presentation the subject was admonished to be

very careful without positive effect. Also one subject succeeded on both the 11

and D tasks but failed on the HD task on Posttest I, and another subject (the one

who went through the experiment twice) performed similarly again during a second

administration of the experiment on the Pretest.

If these latter results are due to other than idiosyncracies, they have im-

portant implications for the structural learning theory with unbounded capacity,
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at least as applied to younger children. It should perhaps be noted in this regard

that our D-H children were of the educationally underprivileged variety and had

considerable difficulty in learning the material. Attention at times was also a

significant problem. These factors suggest that the unlimited capacity assumption

may not have been realized in some as yet well understood way. Among the factors

that may have been operating are: These subjects may be unable to identify infor-

mation even when it is readily available in the environment (i.e., they may lack

even basic searching skills); another possibility is that the long training required

may be indicative of the greater load placed on active memory by the higher order

rules which had to be remembered. That is, the younger subjects may have had to

remember them in terms of a larger number of chunks than older children, thereby

exceeding their processing capacity. Nonetheless, rather than attempt to unravel

this complicated set of results in the present series of experiments, I decided

to determine first whether it would be possible to further separate D and H training.

Experiment III

Method

The method used in Experiment III was identical to that used in Experiment II,

except in the domain rule training. The stimulus situation and statement of the

task were unchanged. After a subject had used the chart to retrieve an A-0B domain

rule, however, the retrieved rule was never held against the given B-'C rule. The

experimenter did, as before, draw the subject's attention to the fact that the

input of the retrieved rule matched the stimulus A objects, and that the output of

the retrieved rule matched the input of the given rule. But this was done in a

manner that did not reveal how to form the composite A-a-c rule.

The scoring criteria for the H task also were modified slightly. If a subject suc-

ceeded on the A-B- problem but failed on another, he was presented with cn en-

tirely new problem and allowed to try again. (This apparently helped to avoid the

ambiguous scoring problem observed in Experiment II.)
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After four +-- subjects (i.e., subjects who solved the H task and failed

the others on the pretest) and four --- subjects had been run, a minor change

was made in the procedure. Since four of the subjects on the HD task attempted

first to use the given lb-0C rule to trade A objects for C objects, the subjects

were reminded just prior to the HD task that the given rule could only be used to

trade B objects for C objects. (All subjects had received such training earlier.)

All fifteen subjects were second and third graders from the Lea Elementary

School between the ages of 7 and 9. All of the subjects were trained on the D

rule first. Fourteen of the subjects required more than two sessions in order to

complete the experiment. The average time per subject was four hours and twenty

minutes. The shortest time taken to complete the experiment was two hours and

fifteen minutes. The longest time taken was nine hours.

Results and Discussion

The results are summarized in Table 3.

INSERT TABLE 3 ABOUT HERE

After success on both the H and D tasks, all but one of the +-- subjects

succeeded uniformly on the HD task. The one exception was a nine year old girl

who failed the HD task on Posttest I and succeeded on Posttest II only after re-

ceiving special help. On these tasks, she appeared to guess cards randomly and

then reject them because they did not "help." On Posttest II when the experimen-

ter finally asked, "What would help?", she indicated that an A-0C card would (help)

but that the C column on the chart was covered. When asked, "Can it be anything

else?" she said she could use an A-B card but did not proceed to look for it.

After restating the problem, the subject began to guess cards randomly again. She

was then asked, "What were the things [rule cards] you told me would help?" She

then looked on the chart for the A-'B card and solved the HD problem. Although

these results can be interpreted in several ways, it is possible that the original



search for an A-'C rule was r-uided by a prelearned selection rule (Scandura, 1973,

Ch. 9). Subsequent rejection would tend to have imposed a greater load on working

memory perhaps, as the above summary of events suggests, making it difficult for

the subject to keep in mind the original goal.

Four of six --- subjects also performed as predicted on the HD task.
8

The

other two subjects, however, failed (only) on the HD task on Posttest II. One,

a seven year old boy, seemed to have no idea of how to proceed. After a number of

apparently random guesses, he became discouraged and unable to concentrate. The

other, an eight yeaL uld girl, moved through the pretraining relatively quickly

but on the HD task refused to investigate any other possibility after finding that

she could not trade the given A objects directly for C objects. In this sense,

she seemed like the nine year old girl mentioned above.

General Discussion

Overall, these results suggest that the enriched mechanism proposed is a

common characteristic of all people. Once a subject knew, or had been taught,

the appropriate higher order H and domain D rules, he typically not only could

solve the corresponding higher order H (and domain) tasks but he was successful

on the even more demanding combined HD task as well. Success on this task cannot

easily be explained in terms of the idealized (memory free) theory but does seem

compatible with the extended mechanism proposed.

The latter theory also has intrinsic support. The enriched mechanism is a

natural extension of that on which the idealized theory is based; the idealized

theory has been tested more extensively. What goes under the rubric of memory can

be handled by extending the basic mechanism of the idealized theory only slightly

to allow for the generation of domain elements. Moreover, these mechanisms provide

a highly general framework within which a wide variety of disparate phenomena can

be viewed such as simple performance, problem solving, learning, and motivation,

not to mention memory (for details, see Scandura, 1973). There is also some
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evidence to suggest that essentially the same theory can be extended to deal with

perceptual and developmental phenomena as well (Scandura, 1973, Ch. 5). The basic

mechanisms of the theory appear to be at least as simple as those required for most

existing memory theories and, yet, the theory potentially has greater generality.

Although the basic mechanism appears generally compatible with existing

memory data, a major limitation is that no serious attempt has been made to date

to make direct contact with a large body of memory research.
9

Nonetheless, in

accord with known facts, for example, it follows directly that degree of recall

should depend on the extent to which the test conditions reinstate the stimulus

conditions during storage. According to Scandura (1973), however, the distinc-

tion between goals and stimuli provides a basis for making finer experimental

distinctions with complex materials than for the most part has been possible to

date. According to the theoretical mechanism proposed, it also is immediately

obvious why a rule that has been used in the immediate past is more likely to be

used than some alternative, even where as in Einstellung experiments, the alter-

native would otherwise be preferable. Rules in A are applied before rules which

must be derived from rules in A. Similar general comments can be made concerning

retroactive inhibition and reminiscence, as the theory clearly provides a basis

for learning between storage and retrieval. In general, this new learning may

either interfere with or facilitate retention.

A major limitation of this research, however, is that it does not take

into account what might happen in those cases where a subject is unable to use

provided information in the environment effectively or where his capacity to pro-

cess information is exceeded.
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Fixed Processing Capacity

The fixed capacity theory follows Miller (1956) in assuming that A

contains 7 + 2 "chunks" of information, only here the chunks may be rules as

well as elements on which rules operate. The mechanisms of the memory theory

with unlimited processing capacity are limited in this regard in that they can

serve only to make more rules active. In the fixed capacity theory, mechanisms

are also needed to explain how information is deactivated. Although little

relevant data are available at this time, it would appear that there are two

basic ways in which deactivation might enter the theory: (1) by modifying the

basic mechanisms so as to allow for deactivation of goals and rules as well as

their activation, and (2) by modifying the rule notion itself so that elements

may be "erased" as well as generated. The basic constraint in either case, ac-

cording to the theory, is the fixed finite capacity of A.

Roughly speaking, Scandura (1973) proposed the hypothesis that goals are

also included in A and are deactivated during a learning episode when they be-

come no longer useful. For example, it was assumed that any initial goal would

remain in A throughout the course of a derivation because it is always the last

as well as the first goal in control. Higher level goals, however, are discharged

from A as control reverts to lower levels. Retaining them in A after this serves

no critical purpose.
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Specifying how goals become active and are deactivated still leaves open

what happens when a rule becomes overloaded in the course of a computation.

In this case, Scandura (1973) rejected such universal assumptions as: The

element in A that is processed first is always dropped first, and proposed

instead to add more structure to rules so that they might serve not only to

activate (generate) new elements during the course of a computation, but also

to deactivate (erase) others. In effect, it was hypothesized that rules might

specify not only what is to be done at each stage of a computation but also

where each generated element is to he located in A. The placement of a new

element in a given location is assumed to erase present contents, much as is

the case in abstract automata (Nelson, 1968).

Ln short, it was proposed in a computation not only that elements can be

generated, and thereby added to A, but also that they can be erased in a speci-

fied manner. A similar principle of erasure was assumed to apply to the shifting

of control among goal levels. Elements, whether they be simple elements, rules,

or goals, are assumed to remain in A if and only if they are needed to determine

either a future output or an operation that must be performed sometime in the

future. For example, let A = rn, rm, o, G}, where So is a stimulus, rn

and r
m

are compatible rules, o is composition and G is the goal. Assume further

that r or (S ) satisfies G but not r (S ) or r (S ). In this case, control
n m o n 0 m o

shifts to G
2

so that now A = {S
o,

rn, rm, o, G, G
2
}. If A becomes overloaded

at this point, something crucial must be erased, but the theory does not specify

what. Here, o is applied to (r
n,

r
m
) generating r

m
or

n
. This time, however,

instead of just adding rmorn to A, rn and rm may be erased, as they are no longer

needed. Similarly, once control reverts to G, G
2 is erased, leaving "more space"
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for the application of r
m
or

n
.

10

The theory also includes explicit procedures for determining, in an

analytical manner, the memory load imposed by individual processes (rules) as

applied to particular instances. Data collected by Voorhies and Scandura

(some of which is reported in Scandura, 1973) supports the viability of this

method. These data are consistent with the notion that each subject has a

fixed finite capacity for processing information. Although processing efficiency

depends on the rule used - an extension of Miller's (1956) finding, the basic,

physiologically determined processing capacity remains fixed.

Incidentally, the theory treats rehearsal as any other procedure. The

data obtained by Voorhies and Scandura strongly suggest that rehearsal in and

of itself has no effect on retention. Unless precautions are taken (e.g.,

Scandura, 1973; Dalrymple-Alford, 1967), however, rehearsal provides opportunities

for chunking and thereby may give the appearance of improving retention. it

should be noted in this regard, that "chunking" so-called involves processes

over and above rehearsal itself, and strictly speaking is not the same (rule)

as pure rehearsal.
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The Structural Theory of Memory and

State Space Formulations - Contrasted

There are at least four major differences between the two formulations.

First, competence in the structural learning theory consists of a finite set of

discrete rules. There is no structure to the set of rules itself. The struc-

ture, if it can bA called that, is imposed by the fixed manner in which the

rules are allowed to interact. In state space theories, on the other hand,

competence corresponds to a highly structured, fixed network.

Generative grammars provide a convenient way of conceptualizing the re-

lationship between structural competence and state space formulations. A

generative grammar, recall, also consists of a set of rules, but these rules

may interact only in a very special way. Namely, they must be applied in se-

quence to successive outputs. State spaces provide a convenient way of represent-

ing the possible ways in which the rules (operators) in a generative grammar may

be combined. State spaces are not adequate for representing structural compe-

tence because rules may be combined and otherwise modified in ways quite different

from simple composition.

In effect, it would appear that competence in the structural learning

theory is both more general and more constrained. It is more general because

of the great variety of higher order rules which are possible. It is more con-

strained in that the rules are designed to reflect the knowledge had by a given

culture or population of subjects, rather than to represent all possibilities.

Unfortunately, the question of how to actually construct a structural com-

petence theory or a state space has barely been touched, even in formal treatments

within computer science. In the latter sphere, for example, the selection of a

state space has important implications for the search effort required to achieve

goals (or retrieve information). Some progress has been made in the problem of
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description of states and operators (Amarel, 1968) but the processes by

which "good" state spaces are devised are very poorly understood. Similarly,

in the structural learning theory, we know that the rules must reflect the

culture of the population of the subjects in question. Other than general

statements to this effect, however, relatively little is known about the speci-

fic relationships which must exist between particular populations and rules.

Another facet of problem formulation is handled quite differently in the

two formulations - namely, that of forming sub-goals. To date this question

seems to have been considered only in state space models, and there only in

problem solving (see Newell Si Simon, 1972). In state space theories, sub-goals

are represented in the state space itself, by means of what are called AND/OR

graphs (state spaces) (see Nilsson, 1971). In the structural learning formula-

tion, sub-goals are hypothesized to result from the way in which problems are

interpreted (.;ee Scandura, 1973, p. 348). Presenting a subject with a problem

statement, for example, is almost universally understood to mean that the sub-

ject first is to define the problem - interpret the statement (sub-goal one), and

then to solve it (sub-goal two). Defining the problem may involve generating

a series of sub-goals, each of which presumably defines a task to be dealt with

according to the mechanisms described above. Perhaps surprisingly, interpreta-

tion (assigning meanings) in the structural learning theory seems not to require

any new mechanisms (see Scandura, 1973, Ch. 7). There is, however, as yet rela-

tively little data relating to this hypothesis.

The second major difference concerns the distinction between competence

and knowledge in the structural learning theory. This distinction, in which

the knowledge had by individual subjects is iefined in terms of competence and

the subjects' behavior, has important implica.:ions for individual differences.

In contrast to the finite, systematic testing procedure provided in the structural
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learning theory, the only way individual differences can be treated in existing

state space theories is by devising separate state spaces and processes for

different individuals. Indeed, the distinction between the structure of input

information (competence) and the structure of the subject's knowledge has barely

been considered (cf. Frederickson, 1972).

Third, turning to learning, we see in the structural learning theory that

knowledge acquisition appears to take place according to a simple, very specific

mechanism in which control shifts among initial and higher level goals in a

predetermined (fixed) manner, a manner assumed to be characteristic of all people.

Although we did not attempt to summarize all of his arguments, Scandurn (1973)

has shown how this one mechanism also deals with motivation, storage and re-

trieval from memory, and interpretative processes by which meanings are assigned.

In state space formulations, on the other hand, learning involves transforming

given state spaces, represented for example by tagging states and/or operators

or by adding new elements. In contrast to learning, retrieval involves searching

through a state space. Motivation has hardly been considered within this framework.

It may be noted parenthetically that, where only part of the relevant

knowledge known to a subject is available, a somewhat more general formulation

is required. Ignoring processing capacity for the moment, the structural learning

theory allows for retrieval (generation) of needed information, including genera-

tion of rules (elements) in domains of available rules as well as rules them-

selves. In state space theories, this corresponds to the commonly assumed situ-

ation where only a selected few of the nodes (states) may serve as starting

locations.

Fourth, where processing capacity is fixed, as it is both in the "enriched"

structural learning theory and in most current information processing theories,

specific allowance must be made for erasure of elements from active status, as
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well as for the generation (activation) of new elements. In state space for-

mulations the processes by which elements are erased and added have a proba-

bilistic and/or arbitrary character. In some theories capacity is assumed to

relate primarily to the state spaces themselves. In the Anderson-Bower (1972)

theory, for example, admittedly arbitrary characteristics of spaces are used to

decide which items (old or new) are to remain active when capacity is exceeded.

In others (e.g., Rumelhart, Lindsay & Norman, 1972; Newell & Simon, 1972)

capacity relates primarily to processes. Rumelhart et al. (1972), for example,

assume a fixed mechanism which recodes active information whenever capacity

is reached. In the structural learning formulation, this would correspond

to the generation of a new processing procedure (rule). Although probability

(or at least nondeterminism) enters the structural learning theory at this

level for the first time (e.g., with computations involving given rules), certain

general constraints relating to the goal switching mechanism are assumed to govern

the erasure of information from active store.

In sum, the structural learning theory appears to have greater generality

and parsimony. Critical parts of the theory have also withstood rather demanding

empirical test. The situation regarding heuristic power in generating research

is inconclusive at present, since both formulations appear pregnant in this

sense. It is basically a case of competing paradigms (Kuhn, 1970).

It should be noted, however, that very little work has been done to date

in applying the structural learning theory to natural language. The reasons

are several, not the least of which is my shared belief (cf. Greeno, 1972) that

more progress can be made, at least initially, by attacking less ambiguous kinds

of knowledge before moving ahead pell-mell into the man-made morass called

"natural language."
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Relationships to Heterarchical Systems in Artificial Intelligence

In this section we comment briefly on the relationship between the structural

learning mechanism, and the notion of heterarchical control in systems of arti-

ficial intelligence (Minsky & Papert, 1972).

For a time artificial intelligence systems were viewed as wholes, as

frequently complex programs. As work in the area progressed, the difficulties

of building upon earlier work, and even of making changes in existing systems,

become increasingly clear because of the close interrelationships among various

parts of such systems. To overcome this limitation, heterarchical, or modular

planning has been used (e.g., Winograd, 1971, Winston, 1970, Charniak, 1972).

Heterarchical systems consist of sets of programs (modules) pertaining to syntax,

semantics, line detection, and so on, together with an heterarchical executive

which switches control among these "modules" in accordance with a predetermined

plan. At the present time, the MIT group is planning ways of enriching the

heterarchical control systems they have d6veloped to date to allow for more

flexibility (Winograd, personal communication).

It should be apparent that modules in heterarchical systems correspond

essentially to rules in the structural learning theory; the executive control

structure corresponds to the basic mechanism. There is, however, an important

difference between the two. In heterarchical systems, the basic goal is prag-

matic. Such systems make it easier to modify and to build upon previous work.

No one seriously means to imply that heterarchical control reflects the way

people perform, although in developing artificial intelligence systems intuitive

judgments are sometimes made with this in mind.

Although any rule system conforming to the structural learning mechanism

can be simulated with (in fact is) a heterarchical system and vice versa, this

is not the main point. The structural learning mechanism is assumed to be built
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into people (presumably from birth); it is not learned and need not be taught.

While the rules a person knows may increase from time to time, the mechanism

is assumed to remain constant.

This is a strong claim, something which no responsible person would make

concerning executive systems currently used in heterarchical systems. Among

other things, it is very unlikely that an existing control system would be useful

in systems other than the one for which it was designed. It is my contention

that benefits might accrue in artificial intelligence and, of course, in simu-

lation if structural learning like control structures were used.

Conclusions

By way of summary, let us return to the questions with which we began.

In a theory of memory, what parts should be fixed? What parts should be flexible?

It would appear from the structural learning analysis, that while certain

pc*rtions of cognitive theory seem to be fixed, much more appears to be flexible.

Furthermore, the question of what is fixed and what io flexible enters in a num-

ber of different ways. Competence theories, for example, are fixed, at least

for given populations and particular content. Knowledge, however, is flexible.

It varies over individuals, although there are specific methods for determining

knowledge from individual behavior and a fixed competence theory.

According to our analysis, the mechanism by which knowledge is selected,

put to use, and acquired, also appears to be fixed. Finally, it would appear

that each person has a fixed finite capacity for processing information, a capa-

city rooted not in the processes used but in the physiological character of man.
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FOOTNOTES

1. State spaces (tree diagrams) are also widely used in analyzing

the hierarchical structure of subject matters (e.g., Gagne, 1962). Such

structures correspond to levels of refinement of rules in the structural

learning theory (for details, see Scandura, 1973, Chapter 5).

2. The model also allows for learning during recall test trials

but this complication need not concern us here.

3. The authors also define higher order nodes which, analogous to

Gagne's (1965) use of the term, are concatenations of other nodes, not to

be confused with higher order rules in the structural learning theory

(Scandura, 1973). The latter operate on classes of rules and may, for

example, generate composite (concatenations of) rules.

4. Even though knowledge is always defined in terms of the rules in

a predetermined competence theory, it must not be thought that such knowledge

is arbitrary. If two or more rules of competence each provide a consistent

basis for assessing behavior potential (i.e., if performance on the respec-

tive equivalence classes is homogeneous), then the respective (sub)rules

used to characterize knowledge are necessarily equivalent. Furthermore,

any viable competence theory in this view must be capable of withstanding

behavioral test (Scandura, 1972). Competence and knowledge are analogous to the

chicken and the egg insofar as priority is concerned.

5. In actuality, this mechanism is oversimplified. For details

concerning an enriched mechanism which deals with rule selection (where

two or more rules apply), and which allows for false starts (i.e., back-

tracking), see Scrndura (1973, Chapter 9).
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6. There was reason to believe in the one deviant case that the conditions

of the experiment had not been adequately fulfilled. The subject was run through

the same experiment a week later, using different rules, this time with positive

results.

7. In order not to mislead the reader, it should be mentioned that this

"first" attempt came after a considerable amount of preliminary pilot work.

8. The results of a seventh -- subject were difficult to interpret

because the D test on Posttest I indicated that the D training had not been

effective. After Posttest I the subject was retrained on the D rule and Posttest

I was repeated. Then he was given then training and Posttest II. In both cases,

he succeeded on all three tasks.

9. According to Scandura (1973), the main reason that this has not been

done is because the theory seems to call for different kinds of data. The theory

does not seem to provide any compelling insights into free recall, for example.

Its major advantages seem to lie in the analysis of memory of more meaningful

knowledge which can be readily and unambiguously represented in terms of rules.

10. Srancura (1973) made no attempt to deal with the question of processing

time, deferring here to ongoing research in the area (e.g., Sternberg, 1969).

Scandura's position was that processing time may ultimately be traced to certain

physiologically based behavior constants of individual subjects, in the same

sense that the processing capacity of individual subjects is fixed.
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FIGURE CAPTIONS

Figure 1. The directed graph represents a state space in which

the nodes represent states and the arrows represent operators or relations.

S denotes the starting state and the G denote goals.

Figure 2. This figure shows a portion of the state space for

DONALD GERALD ROBERT illustrating a simple heuristic search. Once

a digit has been assigned to one letter (e.g., 4 to T), it cannot

be assi!4ned to other letters thereby reducing the search.

FiL;ure 3. The directed graphs labelled 1, 2, 3, and 4 represent

the four paths through the indicated procedure for generating the

"next" numeral in Base Three Arithmetic. The sample S-R pairs belong

to the four equivalence classes defined by the paths.

Figure 4A and 4B. Schematic representations of memory in the

idealized theory of structural learning (4A) and in the "enriched" theory

of memory (4B).

Figure 5. Samples of simple and composite rule cards.



Figure 1



T =

N =

L =

Figure 2

DONALD

+GE RALD

ROBERT



Figure 3

Sample

Stimuli---> Responses
101---> 102
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